Record Information
Version1.0
Creation Date2016-09-30 23:09:53 UTC
Update Date2020-06-04 20:40:31 UTC
MCDB ID BMDB0004628
Secondary Accession Numbers
  • BMDB04628
Metabolite Identification
Common NameLead
DescriptionLead, also known as lead, ion (PB2+) or lead (ii) ion, belongs to the class of inorganic compounds known as homogeneous post-transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a post-transition metal atom. Lead exists as a solid, possibly soluble (in water), and possibly neutral molecule. Lead is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound.
Structure
Thumb
Synonyms
ValueSource
82PBChEBI
BleiChEBI
PbChEBI
PlombChEBI
PlomoChEBI
PlumbumChEBI
LEAD (II) ionChEBI
Lead, ion (PB2+)ChEBI
PB(2+)ChEBI
PB2+ChEBI
GloverHMDB
haro Mix MH-204HMDB
Lead ion (PB2+)HMDB
Lead(2+) ionHMDB
OmahaHMDB
Methyl 2-bromo-6-(((2-(5,6-dihydro-1,4,2-dioxazin-3-yl)-2-((4-(4-nitrophenyl)-1,3-thiazol-2-yl)amino)ethyl)sulfanyl)-methyl)-5-hydroxy-3-methoxybenzoateMeSH, HMDB
Chemical FormulaPb
Average Molecular Weight207.2
Monoisotopic Molecular Weight207.97663585
IUPAC Nameλ²-lead(2+) ion
Traditional Nameλ²-lead(2+) ion
CAS Registry Number7439-92-1
SMILES
[Pb++]
InChI Identifier
InChI=1S/Pb/q+2
InChI KeyRVPVRDXYQKGNMQ-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as homogeneous post-transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a post-transition metal atom.
KingdomInorganic compounds
Super ClassHomogeneous metal compounds
ClassHomogeneous post-transition metal compounds
Sub ClassNot Available
Direct ParentHomogeneous post-transition metal compounds
Alternative ParentsNot Available
Substituents
  • Homogeneous post-transition metal
Molecular FrameworkNot Available
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point327.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.03ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m³·mol⁻¹ChemAxon
Polarizability1.78 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0090000000-123b547ace2c14730ca12016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-0090000000-123b547ace2c14730ca12016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-014i-0090000000-123b547ace2c14730ca12016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0090000000-5199439513f6f28b5c212016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-0090000000-5199439513f6f28b5c212016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-03di-0090000000-5199439513f6f28b5c212016-08-03View Spectrum
Concentrations
StatusValueReferenceDetails
Detected and Quantified0.00869 uM details
Detected and Quantified0.00473 - 0.0215 uM details
Detected and Quantified0.0082 +/- 0.00671 uM details
Detected and Quantified0.03 - 0.7 uM
  • G.K. Murthy, U. R...
details
Detected and Quantified0.020 +/- 0.001 uM details
Detected and Quantified0.02 +/- 0.01 uM details
Detected and Quantified0.020 +/- 0.002 uM details
Detected and Quantified0.02 +/- 0.01 uM details
Detected and Quantified0.193 - 0.772 uM
  • Semaghiul Birghil...
details
Detected and Quantified0.0338 - 0.444 uM details
Detected and Quantified0.003 - 0.0903 uM
  • Sola-Larrañaga C....
details
Detected and Quantified0.02 +/- 0.001 uM
  • Patricia Cava-Mon...
details
Detected and Quantified0.00623 +/- 0.00034 uM
  • Patricia Cava-Mon...
details
Detected and Quantified0.0203 +/- 0.00048 uM
  • Patricia Cava-Mon...
details
Detected and Quantified0.011 +/- 0.001 uM
  • Patricia Cava-Mon...
details
Detected and Quantified0.01 +/- 0.001 uM
  • Patricia Cava-Mon...
details
Detected and Quantified0.011 +/- 0.002 uM
  • Patricia Cava-Mon...
details
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4509317
KEGG Compound IDC06696
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkLead
METLIN IDNot Available
PubChem Compound5352425
PDB IDNot Available
ChEBI ID25016
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Ostapczuk P, Valenta P, Rutzel H, Nurnberg HW: Application of differential pulse anodic stripping voltammetry to the determination of heavy metals in environmental samples. Sci Total Environ. 1987 Feb;60:1-16. [PubMed:3563481 ]
  2. Jeng SL, Lee SJ, Lin SY: Determination of cadmium and lead in raw milk by graphite furnace atomic absorption spectrophotometer. J Dairy Sci. 1994 Apr;77(4):945-9. doi: 10.3168/jds.S0022-0302(94)77030-2. [PubMed:8201052 ]
  3. Tripathi RM, Raghunath R, Sastry VN, Krishnamoorthy TM: Daily intake of heavy metals by infants through milk and milk products. Sci Total Environ. 1999 Mar 9;227(2-3):229-35. [PubMed:10231985 ]
  4. Najarnezhad V, Jalilzadeh-Amin G, Anassori E, Zeinali V: Lead and cadmium in raw buffalo, cow and ewe milk from west Azerbaijan, Iran. Food Addit Contam Part B Surveill. 2015;8(2):123-7. doi: 10.1080/19393210.2015.1007396. Epub 2015 Mar 25. [PubMed:25588978 ]
  5. Semaghiul Birghila, Simona Dobrinas, Gabriela Stanciu and Alina Soceanu (2008). Semaghiul Birghila, Simona Dobrinas, Gabriela Stanciu and Alina Soceanu. Determination of major and minor elements in milk through ICP-AES. Environmental Engineering and Management Journal. November/December 2008, Vol.7, No.6, 805-808. Environmental Engineering and Management Journal.
  6. G.K.MurthyU.RheaJ.T.Peeler (1967). G.K. Murthy, U. Rhea, J.T.Peeler. Rubidium and Lead Content of Market Milk. Journal of Dairy Science. 50(5), May 1967, p. 651-654. Journal of Dairy Science.
  7. A. Foroutan et al. (2019). A. Foroutan et al. The Chemical Composition of Commercial Cow's Milk (in preparation). Journal of Agricultural and Food Chemistry.
  8. Patricia Cava-Montesinos, M. Luisa Cervera Agustín Pastor Miguel de la Guardia (2005). Patricia Cava-Montesinos, M. Luisa Cervera Agustín Pastor Miguel de la Guardia. 2005. Room temperature acid sonication ICP-MS multielemental analysis of milk.Analytica Chimica Acta Volume 531, Issue 1, Pages 111-123. Analytica Chimica Acta.
  9. Cristina Sola-Larrañaga, Iñigo Navarro-Blasco (2009). Sola-Larrañaga C., Navarro-Blasco I. 2009. Chemometric analysis of minerals and trace elements in raw cow milk from the community of Navarra, Spain. Volume 112, Issue 1, Pages 189-196. Food Chemistry.